Магия звука. Звуковые эффекты | WAPOFON

Реклама

Магия звука. Звуковые эффекты

28.12.2011

Давайте подробно остановимся на рассмотрении тех манипуляций со звуком, которые позволяют добиваться появления таких эффектов, как, например, эхо, реверберация и т.п. Выше мы говорили о различных способах преобразованиях звука (амплитудные, частотные и проч.). На основе этих преобразований реализуются звуковые эффекты. Принципиально, целью обработки звука является придание существующему звуку каких-то новых качеств или устранение нежелательных. Звуковые эффекты относятся к тем преобразованиям звука, которые придают звучанию новые формы или полностью изменяют звуковую информацию.

Аппаратную реализацию звуковые эффекты находят в цифровых сигнальных процессорах (DSP). Любой более или менее приличный MIDI-синтезатор имеет встроенный эффект-процессор той или иной сложности (эффект-процессор представляет собой один или несколько DSP). Сложные эффект-процессоры "умеют" накладывать на звуковой сигнал сразу несколько различных эффектов, причем, отдельно для каждого канала, позволяя регулировать параметры эффектов в режиме реального времени. Однако стоимость таких эффект-процессоров чрезвычайно высока (как и стоимость любого другого высокопроизводительного микропроцессора), поэтому профессиональные DSP устанавливаются только на качественной музыкальной аппаратуре. На более или менее дешевых звуковых платах часто устанавливается DSP с упрощенным набором возможностей: наложение одного или нескольких эффектов на все каналы одновременно. Аппаратный эффект-процессор - это, безусловно, хорошо, но обработать звук на высоком уровне можно и программным способом. Существует множество различных звуковых редакторов, позволяющих делать со звуком значительно более сложные вещи, чем это позволяют делать даже самые сложные эффект-процессоры. Кроме того, эффект-процессоры часто эмулируются в виртуальных WT-синтезаторах, а также находят программную реализацию в специальных программах для обработки звука в режиме реального времени.

Использование задержки

Delay. Собственно, эффект задержки (от англ. "delay" - задержка) применяется чаще в случаях, когда моно сигнал требуется преобразовать в нечто вроде псевдостерео. Если моно сигнал подать в оба канала стереофонической акустической системы, то путем некоторой задержки сигнала в одном из каналов можно добиться получения стерео эффекта. Если же в оба канала сигнал приходит одновременно, то слушателю будет казаться, что источник звука расположен посредине. Меняя задержку сигнала в одном из каналов в пределах 8 мс можно получить эффект перемещения источника звука по стерео панораме.

Echo. На использовании метода задержки построено создание эффекта "эхо" (echo). Фактически для получения эха необходимо на оригинальный входной сигнал наложить его задержанную во времени копию. Для того, чтобы человеческое ухо воспринимало вторую копию сигнала как повторение, а не как отзвук основного сигнала, необходимо время задержки установить равным примерно 50 мс. Кроме того, на основной сигнал можно наложить не одну его копию, а несколько, что позволит на выходе получить эффект многократного повторения звука (многоголосного эха). Чтобы эхо казалось затухающим, необходимо на исходный сигнал накладывать не просто задержанные копии сигнала, а и приглушенные по амплитуде.

Reverberation. С использованием задержки можно добиться появления еще одного интересного эффекта - реверберации (от англ. "reverberation" - повторение, отражение). Эффект реверберации заключается в придании звучанию объемности, характерной для большого зала, где каждый звук порождает соответствующий, медленно угасающий отзвук. Таким образом, с помощью реверберации можно "оживить", например, фонограмму, сделанную с заглушенном помещении. От эффекта "эхо" реверберация отличается тем, что на входной сигнал накладывается задержанная во времени не его копия, а выходной сигнал. Такой процесс происходит следующим образом. В первый момент времени входной сигнал проходит на выход без изменений. Затем, по истечении времени задержки, он снимается с выхода, его амплитуда умножается на какой-то коэффициент A (обычно имеющий значение меньше 1, что фактически приглушает сигнал) и суммируется со входным сигналом. И снова, по прошествии очередного промежутка времени задержки, уже смешанный сигнал снимается с выхода, снова перемножается на коэффициент A и в очередной раз суммируется с входным сигналом. Реверберация широко применяется в случаях, когда необходимо "украсить", обогатить звучание сольного инструмента или голоса, а также струнной, духовой групп или других голосов оркестра за исключением только ритм-секции.

Chorus. Эффект chorus (от англ. "chorus" - хор) назван так потому, что в результате его применения звучание сигнала превращается как бы в звучание хора или в одновременное прослушивание нескольких инструментов. Схема получения такого эффекта аналогична схеме создания эффекта эха с той лишь разницей, что задержанные копии входного сигнала подвергаются слабой частотной модуляции (в среднем от 0.1 до 5 Гц) перед смешиванием со входным сигналом. Процесс понижения или повышения частоты уже оцифрованного сигнала является достаточно трудоемкой работой, так как этот процесс происходит путем разложения сигнала на частотный составляющие.

Flanger (от англ. "flange" - фланец, кайма). Реализация этого эффекта напоминает реализацию эффекта эха или хора. То есть, основной сигнал смешивается с его копиями, но слегка задержанными (обычно до времени в 5-15 миллисекунд). Кроме того, эти копии могут быть частотно модулированными, при этом время задержки постоянно изменяется. В результате на выходе получается плавающий звук с биениями частот или хор с измененными тембрами копий основного сигнала. При определенном соотношении задержек, частоты и глубины модуляции возможно получение эффекта, напоминающего восприятие гудка проезжающего мимо слушателя паровоза. В аналоговых устройствах флэнжер достигается путем пропускания сигнала через гребенчатые фильтры. А обнаружен этот эффект был чисто случайно, когда два магнитофона одновременно воспроизводили одну и ту же запись в одном из них случайно задели ведомый ролик пленки (фланец), то есть фактически задержали скорость воспроизведения. От смешивания двух фонограмм возник эффект плавания звука. Этот эффект удивил звукоинженеров своей новизной и в последствии флэнжер стал широко использоваться при написании музыкальных композиций.

Phaser (от англ. "phase" - фаза). Также основан на смешивании входного сигнала с его копиями, сдвинутыми в пределах фазы сигнала. Вообще говоря, сдвиг по фазе аналогичен сдвигу во времени на доли миллисекунд. Может применяться сдвиг по фазе не на фиксированные значения, а изменяющийся по какому-то фазомодулирующему закону. В результате такой эффект может восприниматься на слух как "качание" частот, то есть приглушение то одних, то других. В случае обработки стерео сигнала частоты могут "переплывать" из одного канала в другой. В аналоговой технике для получения фэйзера прибегают к использованию фазовращателей.

Преобразование амплитуд

Distortion. Эффект дистошн (от англ. "distortion" - искажение) основывается на использовании амплитудной модуляции. Фактически это замена одних значений амплитуд сигнала другими значениями. За счет переусиления, когда происходит срезание верхушек входного сигнала, можно получить, например, классический вариант гитары heavy metal (то есть сигналу придается скрежетание или своеобразная "хрипота"). Применение такого эффекта приводит к довольно резкому искажению входного сигнала (в зависимости от глубины модуляции), в результате чего сигнал становится похож на прямоугольный, и как следствие происходит расширение спектра сигнала.

Envelope (от англ. "envelope" - огибающая). Представляет собой изменение огибающей амплитуды сигнала. С помощью такого преобразования можно, например, сигнал, записанный с равномерной громкостью (интенсивностью) на всей его протяженности, сделать медленно нарастающим вначале и медленно спадающим в конце.

Tremolo. Реализуется путем амплитудной модуляции сигнала. Частота амплитудно-модулирующей функции не должна превышать 10-12 Гц. Фактически тремоло представляет собой частный случай амплитудного вибрато с коэффициентом глубины модуляции, равным единице. На слух тремоло воспринимается как дрожание звука.

Частотные преобразования

Частотные преобразования могут проводиться над спектром сигнала или над частотой воспроизведения сигнала. Как мы говорили, на основе частотных преобразований спектра реализуются различные фильтры и эквалайзеры. Принцип действия их состоит в следующем. Входной сигнал раскладывается на частотные составляющие. Затем, в зависимости от производимых действий, какие-то составляющие могут быть полностью приглушены, а какие-то просто изменены по амплитуде. В результате на выходе получается сигнал с отфильтрованными частотами. Частотные преобразования применяются как для "технических нужд" (например, при очистке сигнала от ненужных постоянных шумов), так и для придания звучанию новой окраски. Как уже говорилось выше, разложение сигнала на частотные составляющие и их дальнейшая обратная свертка в сигнал - достаточно трудоемкая операция, поэтому частотные преобразования трудновыполнимы в режиме реального времени. Однако, мощность современных процессоров иногда позволяет производить такие действия.

Vibrato (от англ. "vibrate" - вибрация). Частотное вибрато достигается путем частотной модуляции сигнала с небольшой частотой и малой глубиной модуляции. Воспринимается как завывание звука.

Vocoder (сокращение от англ. "vocal coder" - кодировщик вокала). Способ модуляции сигнала с широким спектром в соответствии с формантными областями голоса. В результате таких преобразований исходный сигнал (например, звук скрипки или гитары) звучит подобно голосу. Создается ощущение поющего или говорящего инструмента. Эффект часто находит применение, например, при создании "компьютерного голоса".

Karaoke. Прежде чем приступить к рассмотрению karaoke, необходимо дать небольшое пояснение, почему karaoke был отнесен к частотным преобразованиям. Действительно, karaoke не в полной мере относится к звуковым эффектам в привычном понимании - он не придает звуку никаких особенностей и никак не облагораживает его. Это даже не совсем эффект, - это больше специфический механизм. Однако этот механизм действительно относится к группе эффектов, основанных на частотных и амплитудных преобразованиях. Итак, karaoke - это механизм удаления из песни вокала исполнителя, для получения т.н. "минусовки" - "-1". Эта "минусовка" в дальнейшем может использоваться как фонограмма при собственном пении. Рассмотрим принцип работы этого механизма. Обычно голос исполнителя находится посредине стерео панорамы. В таком случае удалить голос исполнителя можно путем вычитания одного канала из другого. Следует учитывать, что если голос исполнителя находится не посредине стерео панорамы, то перед вычитанием необходимо сначала уравнять амплитуды сигналов левого и правого каналов. Возможен также вариант, когда в обрабатываемой песне присутствуют голоса нескольких исполнителей. В этом случае удаление голосов производится путем фильтрации соответствующих частот. Однако в любом случае, каким бы способом не производилось удаление голоса (голосов), качество полученной фонограммы всегда будет ощутимо хуже качества звучания оригинала.